Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioelectrochemistry ; 158: 108699, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38574450

RESUMEN

Membrane-less single-medium sediment microbial fuel cells (single-SMFC) can remove Cu2+ from sediment through electromigration. However, the high mass transfer resistance of the sediment and amount of oxygen at the cathode of the SMFC limit its Cu2+ removal ability. Therefore, this study used an oxygen-releasing bead (ORB) for slow oxygen release to increase oxygen at the SMFC cathode and improve the mass transfer property of the sediment. Resultantly, the copper removal efficiency of SMFC increased significantly. Response surface methodology was used to optimize the nano zero-valent iron (nZVI)-modified biochar as the catalyst to enhance the ability of the modified ORB (ORBm) to remove Cu2+ and slow release of O2. The maximum Cu2+ removal (95 %) and the slowest O2 release rate (0.41 mg O2/d·g ORBm) were obtained when the CaO2 content and ratio of nZVI-modified biochar to unmodified biochar were 0.99 g and 4.95, respectively. When the optimized ORBm was placed at the single-SMFC cathode, the voltage output and copper removal increased by 4.6 and 2.1 times, respectively, compared with the system without ORBm. This shows that the ORBm can improve the migration of Cu2+ in the sediment, providing a promising remediation method for Cu-contaminated sediments.

2.
Anal Chim Acta ; 1279: 341790, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37827684

RESUMEN

Microdroplet mass spectrometry (MMS), achieving ultra-fast enzyme digestion in the ionization source, holds great promises for innovating protein analysis. Here, in-depth protein characterization is demonstrated by direct injection of intact protein mixtures via on-line coupling MMS with capillary C4 liquid chromatography (LC) containing UV windows (UVLC-MMS) through an enzyme introduction tee. We showed complete sets of peptides of individual proteins (hemoglobin, bovine serum albumin, and ribonuclease A) in a mixture could be obtained in one injection. Such full (100%) sequence coverage, however, could not be achieved by conventional nanoLC-MS method using bottom-up approach with single enzyme. Moreover, direct injection of a chaperone α-crystalline (α-Cry) complex yielded identification of post-translational modifications including novel sites and semi-quantitative characterization including 3:1 stoichiometry ratio of αA- and αB-Cry sub-units and ∼1.4 phosphorylation/subunit on S45 (novel site) and S122 (main site) of αA-Cry, ∼0.7 phosphorylation/subunit on S19 (main site) and S45 of αB-Cry, as well as 100% acetylation on both N-termini of each subunits by matching the mass and retention time of the intact and its digested peptides. Furthermore, trifluoroacetic acid was able to be used in the mobile phase with UVLC-MMS to improve the separation of differentially reduced intact species and detectability of the droplet-digested products. This allowed us to completely map four disulfide linkages of ribonuclease A based on collision-induced dissociation of disulfide clusters, some of which would otherwise not be detected, preventing scrambling or shuffling errors arising from lengthy bulk solution digestion by the bottom-up approach. Integration of UVLC and MMS greatly improves droplet digestion efficiency and MS detection, enabling highly efficient workflow for in-depth and accurate protein characterization.


Asunto(s)
Disulfuros , Ribonucleasa Pancreática , Disulfuros/química , Secuencia de Aminoácidos , Cromatografía Liquida/métodos , Péptidos/análisis , Espectrometría de Masas/métodos , Proteínas , Ribonucleasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...